Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Completion of solidification and stabilization for Pu nitrate solution to reduce potential risks at Tokai Reprocessing Plant

Mukai, Yasunobu; Nakamichi, Hideo; Kobayashi, Daisuke; Nishimura, Kazuaki; Fujisaku, Sakae; Tanaka, Hideki; Isomae, Hidemi; Nakamura, Hironobu; Kurita, Tsutomu; Iida, Masayoshi*; et al.

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04

TRP has stored the plutonium in solution state for long-term since the last PCDF operation in 2007 was finished. After the great east Japan earthquake in 2011, JAEA had investigated the risk against potential hazard of these solutions which might lead to make hydrogen explosion and/or boiling of the solution accidents with the release of radioactive materials to the public when blackout. To reduce the risk for storing Pu solution (about 640 kg Pu), JAEA planned to perform the process operation for the solidification and stabilization of the solution by converted into MOX powder at PCDF in 2013. In order to perform PCDF operation without adaption of new safety regulation, JAEA conducted several safety measures such as emergency safety countermeasures, necessary security and safeguards (3S) measures with understanding of NRA. As a result, the PCDF operation had stared on 28th April, 2014, and successfully completed to convert MOX powder on 3rd August, 2016 for about 2 years as planned.

JAEA Reports

Stabilization of MOX dissolving solution at STACY

Kobayashi, Fuyumi; Sumiya, Masato; Kida, Takashi; Kokusen, Junya; Uchida, Shoji; Kaminaga, Jota; Oki, Keiichi; Fukaya, Hiroyuki; Sono, Hiroki

JAEA-Technology 2016-025, 42 Pages, 2016/11

JAEA-Technology-2016-025.pdf:17.88MB

A preliminary test on MOX fuel dissolution for the STACY critical experiments had been conducted in 2000 through 2003 at Nuclear Science Research Institute of JAEA. Accordingly, the uranyl / plutonium nitrate solution should be reconverted into oxide powder to store the fuel for a long period. For this storage, the moisture content in the oxide powder should be controlled from the viewpoint of criticality safety. The stabilization of uranium / plutonium solution was carried out under a precipitation process using ammonia or oxalic acid solution, and a calcination process using a sintering furnace. As a result of the stabilization operation, recovery rate was 95.6% for uranium and 95.0% for plutonium. Further, the recovered oxide powder was calcined again in nitrogen atmosphere and sealed immediately with a plastic bag to keep its moisture content low and to prevent from reabsorbing atmospheric moisture.

JAEA Reports

Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu

JAERI-Tech 2003-024, 23 Pages, 2003/03

JAERI-Tech-2003-024.pdf:0.98MB

MOX dissolution with silver mediated electrolytic oxidation method is planned for the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is thought to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid.In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed by the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO$$_{2}$$ purging.

Journal Articles

Effects of organic solvent on infinite neutron multiplication factor of homogeneous plutonium nitrate solution system

Sakurai, Satoshi; Arakawa, Takuya*;

Journal of Nuclear Science and Technology, 35(5), p.365 - 369, 1998/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1